Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.utm.mx:8080/jspui/handle/123456789/476
Título : | Buscador personalizado para la práctica auditiva del Inglés mediante un agente neuronal |
Autor : | IGNACIO ARROYO FERNANDEZ;436775 Arroyo Fernández, Ignacio Martínez Cisneros, Cesar F. |
Palabras clave : | Aprendizaje por refuerzo Buscador personalizado Agente Neuronal Habilidad auditiva del inglés |
Fecha de publicación : | may-2024 |
Editorial : | Universidad Tecnológica de la Mixteca |
Citación : | Martínez Cesar F. (2024). Buscador personalizado para la práctica auditiva del Inglés mediante un agente neuronal (Tesis para obtener el grado de Maestro en Medios Interactivos). Universidad Tecnológica de la Mixteca, Huajuapan de León, Oaxaca, México. |
Resumen : | Actualmente, los buscadores de información dentro de la informática se han convertido en herramientas indispensables para los usuarios. Estas tecnologías han brindado un apoyo significativo en el ámbito educativo, especialmente en el aprendizaje de una segunda lengua, como el inglés. Los buscadores han facilitado el acceso a materiales de práctica para el desarrollo de las cuatro habilidades lingüísticas, siendo la habilidad auditiva una de las más difíciles de adquirir entre los estudiantes. En ese contexto, se han detectado limitaciones en estas herramientas en cuanto a su adaptabilidad a las necesidades individuales del estudiante. En específico su nivel de dominio de la lengua y su desconocimiento de vocabulario presente en las conversaciones de práctica en la base de datos. Por lo anterior, el presente trabajo de tesis desarrolla una herramienta denominada ‘Buscador Personalizado para la práctica auditiva del inglés mediante un agente neuronal’. La tarea principal del agente es aprender a realizar consultas más efectivas al buscador mediante la técnica de aprendizaje por refuerzo. Para lograr el aprendizaje, el agente interactúa con un entorno que consiste en una base de datos y un buscador convencional. Las consultas generadas por agente constituyen sus acciones, mismas que ingresan al entorno y alteran su estado. Las salidas de este último incluyen una recompensa para el agente y los estados actuales del entorno. Si la consulta generada por agente es similar a los requisitos del usuario, la recompensa es positiva; de lo contrario, es negativa. Los resultados mostraron que a mayores recompensas en promedio, se obtienen conversaciones de práctica más adaptadas a las necesidades usuario. |
URI : | http://repositorio.utm.mx:8080/jspui/handle/123456789/476 |
Aparece en las colecciones: | Maestría |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2024-MMI-CFMC.pdf | 13.28 MB | Adobe PDF | Visualizar |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons